
Audited By:
Adrian Hetman @ CertiK
adrian.hetman@certik.org
Reviewed By:
Alex Papageorgiou @ CertiK
alex.papageorgiou@certik.org

bamidefi
BamiDeFi

Security Assessment

April 12th, 2021

[Preliminary Report]

mailto:adrian.hetman@certik.org
mailto:alex.papageorgiou@certik.org

 Disclaimer

CertiK reports are not, nor should be considered, an "endorsement" or "disapproval" of any
particular project or team. These reports are not, nor should be considered, an indication of the
economics or value of any "product" or "asset" created by any team or project that contracts
CertiK to perform a security review.

CertiK Reports do not provide any warranty or guarantee regarding the absolute bug-free nature
of the technology analyzed, nor do they provide any indication of the technologies proprietors,
business, business model or legal compliance.

CertiK Reports should not be used in any way to make decisions around investment or
involvement with any particular project. These reports in no way provide investment advice, nor
should be leveraged as investment advice of any sort.

CertiK Reports represent an extensive auditing process intending to help our customers increase
the quality of their code while reducing the high level of risk presented by cryptographic tokens
and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK's
position is that each company and individual are responsible for their own due diligence and
continuous security. CertiK's goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way
claims any guarantee of security or functionality of the technology we agree to analyze.

What is a CertiK report?

A document describing in detail an in depth analysis of a particular piece(s) of source code
provided to CertiK by a Client.
An organized collection of testing results, analysis and inferences made about the structure,
implementation and overall best practices of a particular piece of source code.
Representation that a Client of CertiK has completed a round of auditing with the intention to
increase the quality of the company/product's IT infrastructure and or source code.

Project Name bamidefi - BamiDeFi

Description Fork of a ParaSwap and SushiSwap with enchanced features.

Platform Ethereum; Solidity, Yul

Codebase GitHub Repository

Commits 1. c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d

Delivery Date April 12th, 2021

Method of Audit Static Analysis, Manual Review

Consultants Engaged 1

Timeline April 8th, 2021 - April 12th, 2021

 Total Issues 13

 Total Critical 0

 Total Major 0

 Total Medium 0

 Total Minor 4

 Total Informational 9

 Overview

Project Summary

Audit Summary

Vulnerability Summary

https://github.com/bamidefi/smart-contracts
https://github.com/bamidefi/smart-contracts/commit/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d

 Executive Summary

Bami Defi is a combination of forks from ParaSwap and SushiSwap. It improves upon main
contracts with added nonReentrant modifiers, following checks-effects-pattern or disallowing
adding twice the same liquidity pool token. Code quality is good with said improvements.

All major issues that are in the Pancakeswap and SushiSwap are also available here. During our
audit and review of the code we only focused on the difference between forked code and the
original code.

Below is the list of contracts and from which project they are forked:

1. BamiToken is forked from SushiToken, no major changes.
2. SyrupBar is forked from SyrupBar from Pancakeswap, no major changes.
3. Timelock is forked from Timelock from Pancakeswap.
4. ChefBami is forked from MasterChef from SushiSwap, harvest functionality was added based

on harvest from MasterChefV2 and locker contract is utilised.
5. MasterChefV2 is slightly modified ChefBami without harvest functionality. More in par with

MasterChef from Pancakeswap.
6. LinearRelease is a new contract that adds locking functionality where tokens are being

locked for specific timeframe.

Most issues found are with LinearRelease contract. Changes and alteration to the forked code
didn't introduced any vulnerabilities.

ID Contract Location

BTN BamiToken.sol contracts/BamiToken.sol

CBI ChefBami.sol contracts/ChefBami.sol

LRE LinearRelease.sol contracts/LinearRelease.sol

MCV MasterChefV2.sol contracts/MasterChefV2.sol

SBR SyrupBar.sol contracts/SyrupBar.sol

TIM Timelock.sol contracts/Timelock.sol

BEP BEP20.sol contracts/libs/BEP20.sol

IBE IBEP20.sol contracts/libs/IBEP20.sol

ICB IChefBami.sol contracts/libs/IChefBami.sol

ILR ILocker.sol contracts/libs/ILocker.sol

MUL Multicall.sol contracts/libs/Multicall.sol

SBE SafeBEP20.sol contracts/libs/SafeBEP20.sol

 Files In Scope

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/BamiToken.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/ChefBami.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/LinearRelease.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/MasterChefV2.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/SyrupBar.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/Timelock.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/BEP20.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/IBEP20.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/IChefBami.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/ILocker.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/Multicall.sol
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/SafeBEP20.sol

LinearRelease.sol

ILocker.sol

IChefBami.sol

MasterChefV2.sol SafeBEP20.sol

SyrupBar.sol

BEP20.sol

BamiToken.sol

IBEP20.sol

 File Dependency Graph

31%

69%

Finding Summary

Minor
Informational

ID Title Type Severity Resolve
d

LRE-
01M

Checks-effects-pattern
not applied

Volatile Code Minor

LRE-
02M

LinearRelease should
inherit from ILocker

Volatile Code Informational

LRE-
03M

Function returns arrays
with single element

Coding Style Informational

BEP-
01M

Out-dated solidity version
used

Volatile Code Minor

BEP-
02M

Unlocked Compiler
Version

Language Specific Informational

BEP-
03M

BEP20 is based on old
version of OpenZeppelin

Coding Style Informational

IBE-01M Unlocked Compiler
Version

Language Specific Informational

ILR-01M ILocker is missing an
event from
LinearRelease.sol

Inconsistency Informational

ILR-02M Contract name is different
from LinearRelease

Coding Style Informational

MUL-
01M

Arbitrary external calls Volatile Code Minor

MUL-
02M

Unlocked Compiler
Version

Language Specific Informational

SBE-
01M

Unlocked Compiler
Version

Language Specific Informational

 Manual Review Findings

ID Title Type Severity Resolve
d

CBI-01S Unchecked Value of ERC-
20 `approve()` Call

Volatile Code Minor

 Static Analysis Findings

Type Severity Location

Volatile Code Minor LinearRelease.sol L58-L69, L97-L107

 LRE-01M: Checks-effects-pattern not applied

Description:

State variables are changed after transfer call to msg.sender.

Recommendation:

It is recommended to follow checks-effects-interactions pattern for cases like this.
It shields public functions from re-entrancy attacks. It's always a good practie to follow this
pattern. checks-effects-interaction pattern also applies to ERC20 tokens as they can inform
the recipient of a transfer in certain implementations.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/LinearRelease.sol#L58-L69
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/LinearRelease.sol#L97-L107
https://solidity.readthedocs.io/en/develop/security-considerations.html?highlight=check-effects#use-the-checks-effects-interactions-pattern

Type Severity Location

Volatile Code Informational LinearRelease.sol L13

 LRE-02M: LinearRelease should inherit from ILocker

Description:

LinearRelease contract should inherit from ILocker interface as its implements the same function.

Recommendation:

Contracts should iherit from interfaces the contract implements.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/LinearRelease.sol#L13

Type Severity Location

Coding Style Informational LinearRelease.sol L71

 LRE-03M: Function returns arrays with single element

Description:

pendingTokens function returns IERC20[] memory, uint256[] memory when it could only
return single IERC and uint256 variable. Before returning the values, _rewardTokens and
_rewardAmounts variables are added to array of lenght 1 and then returned.

Recommendation:

We would recommend to simplify the return statements and only return basic variables instead of
arrays in this case.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/LinearRelease.sol#L71

Type Severity Location

Volatile Code Minor BEP20.sol L3

 BEP-01M: Out-dated solidity version used

Description:

solc frequently releases new compiler versions. Using an old version prevents access to new
Solidity security checks.

Recommendation:

Deploy with any of the following Solidity versions:

0.5.16 - 0.5.17
0.6.11 - 0.6.12
0.7.5 - 0.7.6 Use a simple pragma version that allows any of these versions

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/BEP20.sol#L3

Type Severity Location

Language Specific Informational BEP20.sol L3

 BEP-02M: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

pragma solidity 0.6.2;

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/BEP20.sol#L3

Type Severity Location

Coding Style Informational BEP20.sol General

 BEP-03M: BEP20 is based on old version of OpenZeppelin

Description:

BEP20 is based on old version of OpenZeppelin 2.5.0. Currently newer version are available with
support of newer versions of Solidity and it's features.

Recommendation:

We would recommend using ERC20 from OpenZeppelin from version 3.4 and up.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/BEP20.sol#General

Type Severity Location

Language Specific Informational IBEP20.sol L3

 IBE-01M: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

pragma solidity 0.6.2;

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/IBEP20.sol#L3

Type Severity Location

Inconsistency Informational ILocker.sol L14-L15

 ILR-01M: ILocker is missing an event from LinearRelease.sol

Description:

ILocker only defines Lock event and not Claim event like LinearRelease contract is defining.

Recommendation:

Add Claim event to be compliant with LinearRelease contract

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/ILocker.sol#L14-L15

Type Severity Location

Coding Style Informational ILocker.sol L7

 ILR-02M: Contract name is different from LinearRelease

Description:

Interface name is different than the contract that it is based off i.e. LinearRelease.

Recommendation:

We would recommend to standarize the interface and contract names to be the same when
contract is based off an interface.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/ILocker.sol#L7

Type Severity Location

Volatile Code Minor Multicall.sol L14-L22

 MUL-01M: Arbitrary external calls

Description:

This function can make any external call to any address and it's open for anybody to call it.

Recommendation:

We would restrict the option of calling this function by onlyOwner or governance only.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/Multicall.sol#L14-L22

Type Severity Location

Language Specific Informational Multicall.sol L1

 MUL-02M: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

pragma solidity 0.6.2;

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/Multicall.sol#L1

Type Severity Location

Language Specific Informational SafeBEP20.sol L3

 SBE-01M: Unlocked Compiler Version

Description:

The contract has unlocked compiler version. An unlocked compiler version in the source code of
the contract permits the user to compile it at or above a particular version. This, in turn, leads to
differences in the generated bytecode between compilations due to differing compiler version
numbers. This can lead to an ambiguity when debugging as compiler specific bugs may occur in
the codebase that would be hard to identify over a span of multiple compiler versions rather than
a specific one.

Recommendation:

We advise that the compiler version is instead locked at the lowest version possible that the
contract can be compiled at. For example, for version v0.6.2 the contract should contain the
following line:

pragma solidity 0.6.2;

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/libs/SafeBEP20.sol#L3

Type Severity Location

Volatile Code Minor ChefBami.sol L302, L305

 CBI-01S: Unchecked Value of ERC-20 approve()approve() Call

Description:

The linked approve() invocations do not check the return value of the function call which
should yield a true result in case of a proper ERC-20 implementation.

Recommendation:

Return statement should be checked to be sure that the call was succesfull or not. We can also
recommend using safeApprove() from OpenZeppelin SafeERC20 implementation that
SafeBEP20 is also using.

https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/ChefBami.sol#L302
https://github.com/bamidefi/smart-contracts/blob/c920f5b4b3569adaa4be2d1460ac4a4d7af3a49d/contracts/ChefBami.sol#L305

Appendix

Finding Categories

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases
that may result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of
private or delete .

Coding Style

Coding Style findings usually do not affect the generated byte-code and comment on how to
make the codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain
different code, such as a constructor assignment imposing different require statements on
the input variables than a setter function.

	 Disclaimer
	What is a CertiK report?
	 Overview
	Project Summary
	Audit Summary
	Vulnerability Summary

	 Executive Summary
	 Files In Scope
	 File Dependency Graph
	 Manual Review Findings
	 Static Analysis Findings
	 LRE-01M: Checks-effects-pattern not applied
	Description:
	Recommendation:

	 LRE-02M: LinearRelease should inherit from ILocker
	Description:
	Recommendation:

	 LRE-03M: Function returns arrays with single element
	Description:
	Recommendation:

	 BEP-01M: Out-dated solidity version used
	Description:
	Recommendation:

	 BEP-02M: Unlocked Compiler Version
	Description:
	Recommendation:

	 BEP-03M: BEP20 is based on old version of OpenZeppelin
	Description:
	Recommendation:

	 IBE-01M: Unlocked Compiler Version
	Description:
	Recommendation:

	 ILR-01M: ILocker is missing an event from LinearRelease.sol
	Description:
	Recommendation:

	 ILR-02M: Contract name is different from LinearRelease
	Description:
	Recommendation:

	 MUL-01M: Arbitrary external calls
	Description:
	Recommendation:

	 MUL-02M: Unlocked Compiler Version
	Description:
	Recommendation:

	 SBE-01M: Unlocked Compiler Version
	Description:
	Recommendation:

	 CBI-01S: Unchecked Value of ERC-20 approve() Call
	Description:
	Recommendation:

	Appendix
	Finding Categories
	Volatile Code
	Language Specific
	Coding Style
	Inconsistency

